Mugberia Gangadhar Mahavidyalaya
 Department of Mathematics
 Differential Equations

Mathematics (Hons.): Sem-I(2019): Full Marks 31
Any seven from Group -A: $3 \times 7=21$

1. Show that the differential equation of all parabolas with foci at the origin and axis along x-axis is given by
$y\left(\frac{d y}{d x}\right)^{2}+2 x \frac{d y}{d x}-y=0$
2. Solve : $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$
3. Reduced the differential equation $x^{2} p^{2}+p y(2 x+y)+y^{2}=0$ to Clairaut's form by the substitutions $y=u, x y=v$, solve it for singular solution and extraneous loci, if any.
4. Show that the substitution $x=e^{u}$ transforms the equation
$x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=\cos x$ into $\frac{d^{2} y}{d u^{2}}+3 \frac{d y}{d u}+2 y=\cos x . J A M(M A)-2010$
5. Prove that the differential equation of the circles through the intersection of the circle $x^{2}+y^{2}=1$ and the line $x-y=0$ is
$\left(x^{2}-2 x y-y^{2}+1\right) d x+\left(x^{2}+2 x y-y^{2}-1\right) d y=0$
V.U(Hons.)-2017
6. Explain the terms: general solution, a particular solution, a singular solution as applied to an ordinary differential equation.
7. The equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1, \tag{1}
\end{equation*}
$$

WBSSC 2001
(where a and b are fixed constants and λ is an arbitrary parameter which can assume all real values) represents a family of confocal conics. To obtain the differential equation of this family.
8. If $\frac{1}{M-N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x+y)$, then the differential equation $M d x+N d y=0$ has an integrating factor of the form $e^{-\int f(x+y) d(x+y)}$.
9. Show that the general solution of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ can be written in the form $y=k(f-g)+g$ where k is an arbitrary constant and f, g are its particular solutions.

BU(H) 2010, CU(H) -2009
10. Solve the problem $\frac{d y}{d x}=\frac{y-x+1}{y+x+5}$.
11. Solve

$$
(1+x) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}
$$

12. Solve the differential equation $x \frac{d y}{d x}+y=y^{2} \log x$

Answer any two from the Group -B:

1. Let M, N be two real-value functions which have continuous first partial derivatives on some rectangle

$$
R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b, \quad(a, b>0)
$$

Then the necessary and sufficient conditions for the ordinary differential equation $M(x, y) d x+N(x, y) d y=0$ to be exact in R is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \text { in } R
$$

2. Reduce the differential equation $\left(p x^{2}+y^{2}\right)(p x+y)=(p+1)^{2}$ to Clairaut's form by the substitutions $u=x y, v=x+y$ and then obtain the complete primitive. C.H.-92; V.H-00.
3. Prove that if $M x+N y \neq 0$ and the equation $M d x+N d y=0$ be homogeneous differential equation where M, N have continuous first partial derivatives on some rectangle R, then $\frac{1}{M x+N y}$ in R is an integrating factor of the said equation. V.U(H) : 2016
4. Show that the general solution of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ can be written in the form $y=\frac{Q}{P}-e^{-\int P d x}\left[e^{\int P d x} d\left(\frac{Q}{P}\right)+c\right]$ where c is an arbitrary constant.
V.U(H) : 2017
